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LETTER TO THE EDITOR 

Defect free energies of Potts models on hierarchical lattices 

N M SvrakiCt 
Institut fur Theoretische Physik, Universitat Koln, 5000 Koln 41, Federal Republic of 
Germany 

Received 16 November 1982 

Abstract. The excess defect free energies of interface-like defects in Potts models on 
hierarchical lattices are calculated exactly. For q = 2 (Ising model) the depinning transition 
takes place. For q > 2 the free energies show anomalies which may be interpreted as the 
intrusion of the non-boundary phase into the interphase region, in agreement with recent 
Monte Carlo simulations. 

The structure of an interface in systems like the Ising model, in which only two ordered 
phases coexist below the critical temperature T,, is by now reasonably well understood 
(Widom 1972, Abraham 1980, Pandit et a1 1982). However, the behaviour of an 
interface in e.g. the Potts model (Potts 1952, Wu 1982), in which more than two 
phases coexist, is less well understood. Only quite recently Selke and Pesch (1982) 
have used Monte Carlo simulation to analyse the interface in the d = 2, q = 3 state 
Potts model. They showed that, when the interface between two phases (e.g. phases 
‘1’ and ‘2’) is created using suitable boundary conditions, then the phase ‘3’ intrudes 
into the interphase region at sufficiently high temperature, quite close to the critical 
temperature T,. A similar phenomenon was also observed by Kinzel (1982) who 
analysed the interface in the d = 1, q-state Potts model. In this note we present the 
exact calculation of excess defect thermodynamic functions for the general q -state 
Potts model on a suitably defined hierarchical lattice. These functions exhibit a 
remarkable richness of behaviour, and some of their features are suggestive of 
phenomena observed on two-dimensional lattices (Selke and Pesch 1982). 

Hierarchical lattices have been a subject of considerable recent interest (Kaufman 
and Griffiths 1981, 1982, Griffiths and Kaufman 1982) due to the fact that the 
Migdal-Kadanoff recursion relations, approximate for the Ising square lattice, are 
exact for hierarchical lattices (Berker and Ostlund 1979). The specific hierarchical 
lattice we use is constructed in the way indicated in figure 1. Figure l (a )  shows the 
iteration procedure for ‘regular’ (non-defect) bonds and figure l ( b )  the iteration 
procedure for defect bonds. When the two are combined the lattice in figure l (c )  is 
obtained. This process is then iterated ad infinitum. Defect bonds have strength K 1 ,  
regular bonds K ,  and we shall take K 1  = uK, where a is some arbitrary parameter, 
The Potts model Hamiltonian (Wu 1982) is of the general form 

-PX = H = NKo + Kij(2Ssis, - 1) (1) 
(i i)  

where nearest-neighbour (ij) spins Si and Si interact via Kip Every site in the lattice 
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Figure 1. Construction of hierarchical lattice: ( a )  iteration procedure for non-defect 
bonds; ( b )  iteration procedure for defect bonds; (c) the resulting lattice. 

is assigned the spin-independent term KO (there are N sites) which will be needed 
for calculation of thermodynamic functions. The Hamiltonian in equation (1) is defined 
in such a way that negative couplings Kij will favour spins of different 'orientation'. 
The total, dimensionless, free energy in the thermodynamic limit is of the form 

( 2 )  FN = Trrsl eH = Nfb -t N$d + . . . 
where dots indicate terms diverging less rapidly than Nd, f b  is the bulk free energy 
density, Nd the number of defect sites and f d  the excess defect free energy density. 
Note that f d  will be a function of both K and K1, while f b  depends only on K. The 
trace in equation ( 2 )  is taken over all spin configurations [SI. Applying the usual 
renormalisation group procedure (Niemeijer and van Leeuwen 1976), the renor- 
malised couplings K' and K ;  will be related to the original ones via recursion relations, 
the new system will have a total of N ' = b - d N  sites and N &  = N d / 2  defect sites. 
However, the total free energy will not change. Thus 

FN =F"=N'fb(K')+Nkfd(K' ,K;) f .  . . (3) 
where the dependence on couplings is explicitly indicated. Comparing equations ( 2 )  
and (3), we get the scaling relation 

(4) 

The spin-independent term KO will also change under renormalisation transformation: 
Kb will be a function of K only for those spins which are connected with all non-defect 
bonds, and a function of both K and K1 for spins connected with defect bonds. We 
shall distinguish the two as Kb and Kbl, respectively. Using definition equation (2) 
and scaling equation (4) we get (Svrakit: and Wortis 1977) 

fd(K, K1) = $fd(K', K; ). 

n = O  

where n denotes the number of renormalisation group iterations. The strategy is 
clear: one iterates away from 'difficult' values of couplings K and K1 into a region 
(K'M', K i M ' )  where fd(K'M', KiM')  can be easily calculated. The incremental defect 
free energy contributions (terms under summation sign), properly scaled, are collected 
in the process. Then fd(K, K1) immediately follows from equation ( 5 ) .  

In figure 2 we show the results of this calculation for the case q = 2 (Ising model). 
The defect free energies f d  are plotted for several values of the parameter a. It can 
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Figure 2. Excess defect free energies for q = 2 (Ising spins). fd(a = -1) is the interface 
tension. For further details see text. 

be seen that, when a = -1, the defect free energy vanishes at and above the (dimension- 
less) critical temperature T, = l/Kc. This illustrates the fact that value a = -1 has a 
special meaning for the Ising model: fd(a = -1) is the interface tension. When 
-1 < a  s 0, and we show the case a = -1, the second derivative of the defect free 
energy (and this is proportional to the defect specific heat) will change sign at some 
temperature below the critical temperature T,, signalling the onset of the wetting 
transition (Abraham 1980). The case -1 s a zs 0 corresponds to the interface-pinning 
defect, since one can show that such a defect in a hierarchical lattice with periodic 
boundary conditions is equivalent to the defect 0 s a S 1 in the lattice with antiperiodic 
boundary conditions. In particular, the calculated defect free energies will be the 
same, as seen in equation (5 ) .  Furthermore, this lattice cannot distinguish whether 
the defect is on the boundary or not, and this is reflected in the recursion relations 
(Kaufman and Griffiths 1982). This is generally not true in the two-dimensional king 
model since there it is important that the defect is located at the boundary (Abraham 
1980) if the wetting (depinning) transition is to occur. 

The vanishing of the f d ( a  = -1) above T, in the Ising model is associated with 
cancellation of terms in equation (3, and this, in turn, happens because the initial 
relation K1 = -K is preserved under iterations, i.e. K?)  = -K(") . However, this 
relation is not preserved in the 4 # 2 Potts model because these systems do not possess 
ferromagnetic-antiferromagnetic symmetry. Therefore, if f d ( a  = - 1) is calculated for 
q # 2, this quantity will not be the interface tension. In particular, this free energy 
will not vanish at the critical temperature T,(q). The limiting form for fd when K + 0 
is given by fd/K - (1 - a ) ( q  - 2 ) / q ,  which is zero only if a = 1 and/or q = 2. This 
form is also valid for two-dimensional lattices and can be easily derived from the 
high-temperature expansion (Wu 1982). Figure 3 shows our results for f&) when 
a = -1 for a range of q-values. Several features are readily apparent. First, the critical 
temperature T,(q) will decrease with increasing values of q. For the lattice on figure 
l(c), T,(q) = 1/K, is obtained as the solution of 

(6 )  
For the pair (K,, q )  satisfying equation (6) the defect coupling fixed point is given as 

2q = (e2Kc- 1)[(4eKc+ 1)1'2-3]. 
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Figure 3. Excess defect free energies for q # 2 and a = -1 

KT = -K,+ln(q - l), clearly displaying the symmetry K:"' = -K("' when q = 2. 
Second, when q = 1, which corresponds to the percolation limit (Wu 1982), fd(q = 1) = 
-2K for all values of K ,  indicating that there is no entropy associated with the defect 
in a system with only one phase (simply, such systems cannot be disordered). But the 
effect of increasing q slightly above 1, and we show the case q = 1 + 5 x lo-', is quite 
impressive. Clearly, the insertion of negative coupling(s) in the Potts model can have 
a large effect depending on the value of q. At the other end of this behaviour is the 
q + 0;) limit which has the high-temperature behaviour for all temperatures. 

The behaviour of the defect free energies for the intermediate q-values is in 
between the above two extremes. As is seen in figure 3, fd(q >2)  will go through 
zero at some temperature To(q) which is strictly lower than the critical temperature 
T,(q). The difference T,(q) - To(q) will stay relatively small when q is increased and 
will not appreciably change. If the interpretation is that To(q) is the temperature at 
which the intrusion of other phases takes place (the defect is interface promoting), 
then our results suggest, in accordance with the exact results of Kinzel (1982), that 
such an intrusion will take place at temperatures which are close to the critical 
temperature. This is consistent with the Monte Carlo data of Selke and Pesch (1982). 
Furthermore, one expects the size of the intruding phase to be of the order of the 
correlation length and, if the above interpretation is accepted, then the boundary 
phase would play the role of the substrate and the intruding phase the role of the 
adsorbate exhibiting the wetting transition. This point clearly deserves further investi- 
gation, which is under way. 

In summary, we have calculated excess defect free energies in Potts models on 
hierarchical lattices. In the case q = 2 (Ising model) suitably introduced defects give 
rise to the interface depinning transition, in agreement with the d = 2 result of Abraham 
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(1980). When q f 2 the observed anomaly (vanishing) of the free energy may suggest 
the intrusion of the non-boundary phase into the interphase region, as seen in recent 
Monte Carlo experiments (Selke and Pesch 1982). 

Discussions with W Kinzel and W Selke are acknowledged. I am grateful to W Selke 
for providing the yet unpublished Monte Carlo results. D Stauffer kindly read the 
manuscript. This research is supported by SFB 125 Aachen-Julich-Koln. 

Note added. After this work was completed we learned that very recent Monte Carlo results (Selke 1982) 
performed on the q = 4 Potts model in two dimensions also show the intrusion of the non-boundary phase 
into the interphase region. This intrusion takes place at a temperature quite close to the critical temperature, 
in agreement with the results of this work. I am grateful to W Selke for this information. 
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